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The Freudenthal Suspension Theorem is a fundamental result in
homotopy theory thanks to its fundamental role in underpinning
stable homotopy theory. The basic, and remarkable implication of
the theorem is that

πi (S
n) ∼= πi+1(Sn+1)

for i < 2n − 1. The standard modern statement of the theorem
deals with suspensions of general topological spaces, although
Freudenthal’s original result dealt only with spheres.
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• In order to ensure that we’re all on the same page, I will collect
some basic concepts, so bear with me momentarily and don’t feel
insulted.
• Def (nth homotopy group): X ∈ Top with basepoint x0 ∈ X ,
s ∈ Sn a chosen basepoint of the n-sphere. Then

πn(X , x0) = {[f ] : f : Sn → X , f (s) = x0}

With group operation

(f + g)(t1, ..., tn) =

{
f (2t1, ..., tn) t1 ∈ [0, 12 ]

g(2t1 − 1, ..., tn) t1 ∈ [12 , 1]

• Def(n-connected) A space X ∈ Top is called n-connected if
πi (X ) = 0 for all i ≤ n. 0-connected ↔ path-connected,
1-connected ↔ simply connected.
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• Let A ⊆ X and x0 ∈ A. The nth relative homotopy group
πn(X ,A, x0) is the collecton of homotopy classes of based maps
Dn → X which take the boundary ∂Dn = Sn−1 to A. That is, for
a given basepoint s ∈ Sn−1,

πn(X ,A, x0) = {[f ] : f : Dn → X , f (Sn−1) ⊆ A, f (s) = x0}

• An important advantage is that the relative homotopy groups fit
into a long exact sequence

· · · → πn(A)
i∗−→ πn(X )

j∗−→ πn(X ,A)
∂−→ πn−1(A)→ · · ·

where i∗ and j∗ are the maps induced by the inclusions A ↪→ X and
(X , x0) ↪→ (X ,A) respectively, and ∂ comes from restriction maps
(Dn, Sn−1)→ (X ,A) to Sn−1
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• Suppose (X ,A) is n-connected, so that πi (X ,A) = 0 for i < n.
By the long exact sequence, this implies that the induced map
i∗ : πi (A)→ πi (X ) is an isomorphism for i < n and a surjection for
i = n. The inclusion i : A ↪→ X is called an n-equivalence.

• More generally, a map f : X → Y is called an n-equivalence if
the induced map f∗ : πi (X )→ πi (Y ) is an isomorphism for i < n
and a surjection for i = n. In this language, a weak homotopy
equivalence is an ∞-equivalence.
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• We now proceed with Blakers Massey.

Def: An excisive triad (X ,A,B) consists of a topological space X
along with two subspaces A,B ⊆ X whose interiors cover X :
A◦ ∪ B◦ = X .

• The excision theorem in homology states that the inclusion
(A,A ∩ B) ↪→ (X ,B) induces an isomorphism on homology groups,
and is one of the reasons why homology groups are so relatively
easy to compute, e.g. the long Mayer Vietoris sequence of an
excisive triad.

• Unfortunately the same does not hold in the context of
homotopy groups: the inclusion (A,A ∩ B) ↪→ (X ,B) does not in
general induce an isomorphism on homotopy groups. One can
come up with fairly simple counterexamples (e.g. a wedge product
of two spheres).
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• The Blakers-Massey excision theorem gives us conditions under
which the inclusion (A,A ∩ B) ↪→ (X ,B) for an excisive triad does
yield an isomorphism on homotopy groups: it turns out that the
homotopy groups will satisfy excision in a specific range of
dimensions, a range which is roughly the sum of the connectivities
of (X ,B) and (A,A ∩ B). We now state the theorem in a
convenient form which will suffice for our purposes, but note that
the result can be tightened up slightly (see the book by Tammo
Tom Dieck, for example):

Theorem (Blakers-Massey): Let (X ,A,B) be an excisive triad
such that the intersection C = A ∩ B is nonempty. Suppose
(A,C , ∗) is n-connected and (B,C , ∗) is m-connected for each
choice of basepoint ∗ ∈ C . Then for every basepoint ∗ ∈ C , the
map πi (A,C )→ πi (X ,B)

induced by the inclusions is an isomorphism for i < n + m and a
surjection for i = n + m.
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• Note that the conclusion is the same as saying that the inclusion
(A,A ∩ B) ↪→ (X ,B) is an (n + m)-equivalence.

• As our focus is squrely on the Freudenthal suspension theorem,
we will only go through a hand wavey sketch of the proof. The
strategy is to reduce an arbitrary excisive triad (X ,A,B) to
something simpler. There are also more elegant proofs using the
Hurewicz theorem and homotopy fibres which you may be
interested in reading up on.

• First reduction: We prove Blakers-Massey for when A is built
from C = A∩B by attaching cells of dimension greater than n and
B is built up from C by attaching cells of dimension greater than
m.
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• Proof ‘sketch’: We claim that an n-connected pair (A,C ) can be
replaced by another n-connected pair (A′,C ) such that the
following diagram commutes:

C� _

��

� � // A′

∼=
��

A

and A′ is built from C by attaching cells of dimension greater than
n only. To see this, we build up a CW complex from C by attaching
cells which represent elements of πi (A) or get rid of elements
which shouldn’t be in πi (A). Since πi (C ) ∼= πi (A) for all i < n, we
only need to add cells of dimension greater than n to make this
work. The procedure can likewise be carried out for (B,C ) ‘�’
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• Second Reduction: It suffices to prove Blakers-Massey when each
of A and B is built from C by attaching one cell apiece.

Proof sketch: By induction on the number of cells. We first claim
that it’s sufficient when (A,C ) has exactly one cell. Write
A = A′ ∪ e for C ⊆ A′ ⊆ A, so that (A,A′) has one cell, and
(A′,C ) has exactly one cell less than (A,C ). Consider
X ′ = A′ ∪C B, so that X ′ is just X without the cell e. The nugget
of the proof is showing that if homotopy excision holds for the
excisive triads (X ′,A′,B) and (X ,A,X ′) by induction, then it also
holds for the triad (X ,A,B).
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This follows via an application of the five lemma to the exact
sequence of triples for both of the triples in the inclusion
(X ′,A′,B) ↪→ (X ,A,X ′). We can then conclude that considering
(A,C ) with one cell is sufficient.

The next step is to show that the same holds for (B,C ), and we
follow a similar argument writing B = B ′ ∪ e ′, X ′′ = A ∪C B ′ for
C ⊆ B ′ ⊆ B. If excision holds for the triads (X ′,A,B ′) and
(X ,X ′,B), it must also hold for (X ,A,B) since the inclusion

(A,C ) ↪→ (X ,B)

can be factored as

(A,C )→ (X ′′,B ′)→ (X ,B)

This concludes the proof of the second reduction.
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We shown thus far that it suffices to consider (X ,A,B) with
A = C ∪ e and B = C ∪ e ′ for single cells e, e ′ of dimensions
greater than n and m respectively. The core of the proof is to show
that Blakers-Massey actually does hold for such triads. We’ll go
through a brief overview of this result, you can look in the
literature for more detail.

Lemma Suppose that X = A ∪C B where A = C ∪ e and
B = C ∪ e ′ are both built from C by attaching cells of dimensions
greater than n and m respectively. Then the map of relative
homotopy groups πi (A,C )→ πi (X ,B) is an isomorphism for
i < n + m and a surjection for i = n + m.
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• Proof sketch: For any two interior points x ∈ ◦e and y ∈
◦
e ′ there

is a diagram

πi (A,C ) //

∼=
��

πi (X ,B)

∼=
��

πi (X \ {y},X \ {x , y}) // πi (X ,X \ {x})

Where the fact that the vertical maps are isomorphisms follows
from observin that X \ {x} is homotopy equivalent to B by
retracting e \ {x} to its boundary, and similar retractions give
X \ {y} ∼= A, X \ {x , y} ∼= C .
Let’s first do surjectivity. Take a representative of πi (X ,B), which
we consider here as a map f : (I i , ∂I i )→ (X ,B) taking
Jn−1 := cl(∂I n \ (I n−1 × {1}) (this is a standard and equivalent
definition of the relative homotopy group) to the basepoint ∗ ∈ C ,
i.e. f maps the top face of I i into B, and the rest of the boundary
to ∗.
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Via the above diagram, it suffices to show tht f is homotopic to a
map f ′ via a homotopy h, such that

• the image of f ′ is in X \ {y}
• for every t ∈ I , the restriction of ht to the top face of I i avoids x
• for every t ∈ I , ht maps J i−1 to ∗

If we can find such a map f ′ and homotopy h, then we have shown
that every representative in πi (X ,B) ∼= πi (X ,X \ {x}) is
homotopic to some representative in πi (X \ {y},X \ {x , y}). That
is, πi (A,C )→ πi (X ,B) is surjective for i ≤ n + m. I will leave out
the proof that we can actually produce such maps f ′ and h.

• Injectivity of πi (A,C )→ πi (X ,B) for i < n + m follows via an
almost identical argument: suppose we’re given two representatives
g and g ′ of πi (A,C ) such that [g ] = [g ′] ∈ πi (X ,B) via some
homotopy H : I i × I → X .
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Replacing the map f in the surjectivity argument with with H, our
new claim is that we can find another homotopy H ′ homotopic to
H via some homotopy Φ such that H ′ misses y , the restriction of
Φt to the top face of I i+1 misses the point x , and Φt sends J i to
the basepoint ∗.
This implies that there is a homotopy from f to g in X \ {y}
relative to X \ {x , y}. That is, [g ] = [g ′] ∈ πi (X \ {y},X \ {x , y}).
This holds for i + 1 ≤ n + m, as the domain of H is I i+1, while the
domain of f is I i , whence πi (A,C )→ πi (X ,B) is injective.

The Blakers-Massey theorem does not directly help in computing
homotopy groups, but it does allow us to relate the homotopy
groups of spaces within a so-called ‘stable’ range.
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• Let (X , x0) be a based space. The suspension homomorphism
is the map Σ∗ : πi (X )→ πi (ΣX ) : [f ] 7→ [Σf ] where

Σf := f ∧ idS1 → ΣX : [s, t] 7→ [f (s), t]

We can now state the (generalised version of the) Freudenthal
suspension theorem

Theorem (Freudenthal): Suppose X is an (n − 1)-connected
based topological space. Then the suspension homomorphism
Σ∗ : πi−1 → πi (ΣX ) is an isomorphism for i < 2n and a surjection
for i = 2n. Succinctly stated, the suspension homomorphism is a
2n-equivalence.
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Proof: We’ll prove the theorem by exhibiting a suitable excisive
cover of the suspension ΣX , apply homotopy excision, and refer to
the long exact sequences for some relative pairs.

Now the suspension ΣX has a fairly natural excisive cover given by
two reduced cones over X , one over and one under X , identified
along their bases. Denote these cones by Y+ and Y− with the
intersection Y0 = Y+ ∩ Y− = X × {12}, which is homotopy
equivalent to X . Let’s also denote a chosen basepoint [x0,

1
2 ] in the

intersection by just x0. Y+ and Y− are of course contractible onto
X × {0} and X × {1} .

We now want to relate the homotopy groups of X to the
homotopy groups of the suspension. Let’s first look at the long
exact sequence for the pair (ΣX ,Y±):

· · · → πi (Y±, x0)→ πi (ΣX , x0)→ πi (ΣX ,Y±, x0)→ πi−1(Y±, x0)→ · · ·
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Plugging in what we already know, namely that πi (Y±, x0) = 0, we
obtain a short exact sequence

0→ πi (ΣX , x0)→ πi (ΣX ,Y±x0)→ 0

whence πi (ΣX , x0) ∼= πi (ΣX ,Y±, x0). Likewise the LES for the
pair (Y±,Y0)

· · · → πi (Y±, x0)→ πi (Y±,Y0, x0)→ πi−1(Y0, x0)→ πi−1(Y±, x0)→ · · ·

gives us that πi (X , x0) ∼= πi+1(Y±,Y0, x0). Moreover, as X is
(n − 1)-connected by hypothesis, i.e. πi (X , x0) = 0 for i ≤ n − 1,
the pairs (Y±,Y0) are n-connected, so upon application of
Blakers-Massey we find that the map

i∗ : πi (Y−,Y0)→ πi (ΣX ,Y+)

induced by the inclusion is an isomorphism for i < 2n and a
surjection for i = 2n.
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We therefore have the diagram

πi (Y−,Y0)
i∗ //

∂ ∼=
��

πi (ΣX ,Y+)

πi−1(X ) // πi (ΣX )

∼=j∗

OO

Where the first isomorphism is given by the boundary map
∂ : πi (Y−,Y0, x0)→ πi−1(Y0, x0) and the second isomorphism by
the inclusion j∗ : (ΣX , x0, x0) ↪→ (ΣX ,Y+, x0).
Everything we’ve done up to this point tells us that the bottom
horizontal map is an isomorphism for i < 2n and surjection for
i = 2n, but it remains to be shown that this is, in fact, the
suspension homomorphism Σ∗.
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• In order to do this, we need to figure out where an element
[f ] ∈ πi−1(X ) is sent to in πi (Y−,Y0) under the inverse of the
boundary map ∂−1. Given a representative f : S i−1 → X , we want
to find a map g : (D i ,S i−1)→ (Y−,Y0) such that the homotopy
class of the restriction

[
g |S i−1

]
= [f ]. A natural choice for such a

map is

g : D i ,Y− : t · x 7→
[
f (x),

t

2

]
where t ∈ [0, 1] and x ∈ S i−1. This map is continuous at 0 ∈ D i

and its restriction to S i−1 is the composition

S i−1 f−→ X
−, 1

2−−→ Y0
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so we do have that [g ] ∈ πi (Y−,Y0), and therefore ∂[g ] = [f ] and
∂−1[f ] = [g ]

• Once we include into πi (ΣX ,Y+), there is enough wiggle room
in Y+ to find a homotopy from g to the map

ĝ : D i → ΣX : t · x 7→ [f (x), t]

for example (t · x , s) 7→
[
f (x), t

2−s
]

does the job.

• Finally, we’d like to view [ĝ ] as an element of πi (ΣX ) instead of
as an element of πi (ΣX ,Y+). But as we discovered previously, the
map j∗ : πi (ΣX )→ πi (ΣX ,Y+) is an isomorphism, induced by
contracting Y+ onto the basepoint x0. But construction of the map
ĝ , any boundary point s ∈ S i−1 is sent to [f (s), 1] = [x0, 1] = x0,
so [ĝ ] is in fact already an element of πi (ΣX ), except that now we
would like to see ĝ as a map from ΣS i ∼= S i+1, which we do by
precomposing with the homeomorphism

ΣS i ∼= D i/S i−1 : [x , t] 7→ t · x
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The resulting map is then precisely the suspension of f . Collecting
what we’ve just done, we have shown that the following diagram
commutes

[g : t · x 7→ [f (x), t/2]] // [g ] = [ĝ : t · x 7→ [f (x), t]]

��

[f : x 7→ f (x)]

OO

// [Σf : [x , t] 7→ [f (x), t]]

So the bottom horizontal map is indeed the suspension
homomorphism, as we wanted, proving the theorem.
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• I’ll conclude by briefly defining stable homotopy groups. The
Freudenthal suspension theorem as initially proven by Freudenthal
was stated for X = Sn, and his goal was to calculate higher
homotopy groups of spheres. Most saliently, it is true that

πi (S
n) ∼= πi+1(Sn+1)

for i < 2n − 1, and in particular, since we know that
π1(S1) ∼= π2(S2) ∼= Z, Freudenthal allows us to conclude that

pi1(S1) ∼= π2(S2) ∼= · · · ∼= πn(Sn) ∼= · · ·

Which motivated the study of stable homotopy groups. Given an
arbitrary CW complex X , the Freudenthal suspension theorem
combined with the fact that ΣX is connected allows us to
conclude that the nth suspension ΣnX = Σ(Σn−1(X )),
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so the map
Σ∗ : πi (ΣnX )→ πi+1(Σn+1X )

is an isomorphism for i < 2n − 1. This implies that after some
index i , the maps in the sequence

πi (X )→ πi+1(ΣX )→ πi+1(Σ2X )→ · · ·πi+n(ΣnX )→ · · ·

eventually all become isomorphisms. That is, they eventually
stabilise.

The i th stable homotopy group of X is defined to be the colimit

πsi (X ) := colimn(πi+n(ΣnX ))


